

Energy Efficiency in Sustainable Port Development and Operations

AAPA Facilities Engineering Seminar and Expo

November 07, 2013

Clear Communications

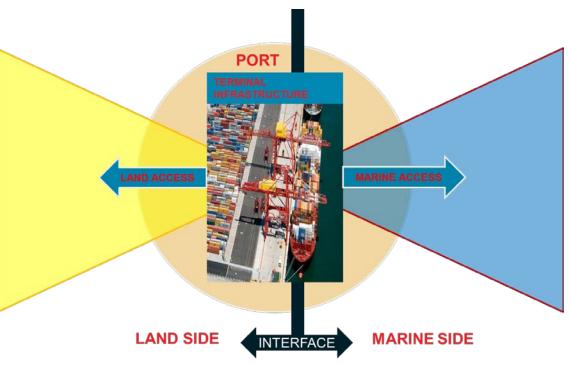
Zero harm to people and assets Zero environmental incidents

- A new fuel tanker arrives on location at a site in the middle east
- The HSE manager tells the fleet supervisor to ensure that the tanker is clearly labelled "Diesel Fuel" and "No Smoking" in Arabic

Clear Communications

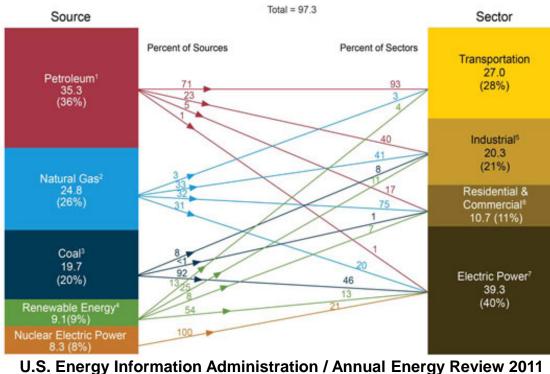
Zero harm to people and assets Zero environmental incidents

- A new fuel tanker arrives on location at a site in the middle east
- The HSE manager tells the fleet supervisor to ensure that the tanker is clearly labelled "Diesel Fuel" and "No Smoking" in Arabic
- The result...


- Port Development, Operations, and Modernization
- Growth Factors
- Energy Review and Savings Potential
- Understanding the Existing Port's Energy Infrastructure
- Future Energy Demand
- Sustainability and Non-Technical Risk Management
- Strategy and Energy Policy

Port Development

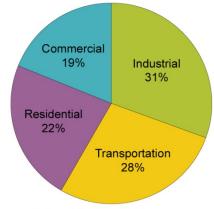
- Geographic Location
- Physical Characteristics
- Landside Transportation
- Urban Centers
- Dynamic Processes
 - Globalization
 - Containerization
 - Modern Logistics
- Expansion Factors
 - Available Land
 - Environmental Concerns
 - Political Influences
 - Social Dynamics
 - Operational Productivity and Managerial Efficiency Improvement


Growth Factors

- Persistent trade globalization
- Emerging economies and markets
- Increasing demand for resources and consumer goods
- Aging infrastructure
- Strict environmental regulations and permits
- ► Escalating competition among ports → modernization
- Mobilization of finance and investment funds
- Growing needs for efficiency in operations, productivity, and capacity

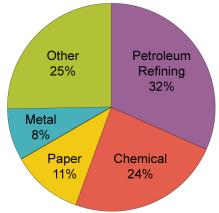
Energy Review Primary Energy Consumption

by Source and Sector, 2011 (Quadrillion Btu)



97.3 quads in 2011 < 98.0 quads in 2010

due to energy efficiency and renewables



Share of Energy Consumed by Major Sectors of the Economy, 2011

Source: U.S. Energy Information Administration, Annual Energy Review 2011, (September 2012).

Energy Use by Type of Industry, 2006

Source: U.S. Energy Information Administration, *Manufacturing Energy Consumption Survey 2006*, Table 1.2.

Energy Savings Potential

U.S. Most Energy-Intensive Industries

Industry	Value of Shipments	CAPEX	Energy Consumption
Petroleum	\$219 billion	\$7.3 billion	7.5% of total energy use
Chemicals	\$438.4 billion	\$18.9 billion	6% of total energy use 25% of US manufacturing energy use
Forest Products	\$243.1 billion	\$9.5 billion	14% of US manufacturing energy use
Steel	\$60.6 billion	\$1.79 billion	1.5% of total energy use 6.7% of US manufacturing energy use
Aluminum	\$28.1 billion	\$1.2 billion	1% of total energy use
Glass	\$27.7 billion	\$1.83 billion	energy cost 5-7% of shipments
Metalcasting	\$28 billion	\$1.5 billion	1% of US manufacturing energy use

Energy Savings Potential

- Refineries (Upstream)
 - Thermal \$10MM/year \$60MM/year
 - Electrical \$2MM/year \$10MM/year
- Other industrial facilities, i.e. Ports and Marine Terminals
 - 10% 15% Typical Energy Savings Potential

10% energy reduction = 310 Tons Per Day (TPD) CO₂ emissions reduction

Port Current Operations

- Existing Energy Infrastructure Conditions
 - Port and Tenant Operations, Facilities, Vehicles, Equipment
 - Existing Energy Portfolio
 - Energy Use Data and Profiles (Meters, Sub-meters, Tenants, Port)
 - Energy Audits and Reports
 - Energy baseline for Long-Term Demand Projections
 - Port, Local, State and Federal Policies
 - Sustainability, Emissions Reduction, Strategic Plans, and Other
 - Environmental and Regulatory Situation
 - Capital Improvement Plans
 - Port Master Plans
 - Port as a Utility
 - Power Generation
 - T&D
 - Renewables

Port Operations / Terminals

Terminal Elements Marine structures Yard Cranes **Building Infrastructure Power Infrastructure** Vehicles Equipment Tenant Operations

Types of Terminals Container RORO / LOLO **Material Bulks** Agri-Bulks Oil & LNG Ferry / Cruise Artic **Brownfield / Greenfield** Floating

Energy Management Activities

Energy Efficiency Activities

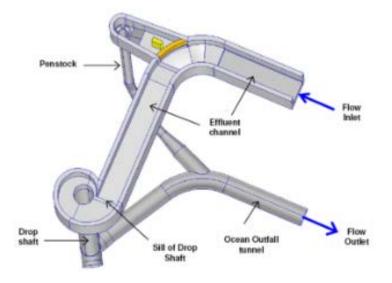
- Facilities (Lighting and HVAC)
- Load Factors
- Demand Response
- Combined Cycles and Cogeneration
- Waste Energy Minimization and Recovery
- Energy Storage
- Changing the Patterns of Energy Use
- Shifting to Other Sources of Energy
- Human Behaviors and Habits

Transportation Energy-Related Options

- On-Road, Air, Rail, Marine, Mass Transit
- Multi-Modal Intermodal Freight (Trucks, Rail)
- Alternative Fuels and Vehicles
- Electrification vs. Gasification
- Energy Efficiency Indicators: VMT, PMT, Fuel Costs

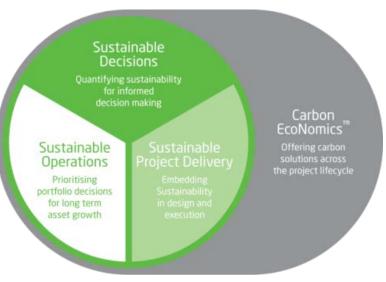
Optimizing Energy Usage

RESULTS



Port Modernization

- Automation
- Cold Ironing
- Energy Security and Independence
- Port Security
- Resiliency
- Sustainable Modernization
 - Terminal Planning & Operations
 - Marine Shipping and Logistics
 - Intermodal Rail Yard / Barge
 - Resource Materials
 - Energy Innovation
 - Mini-Hydro Power Generation

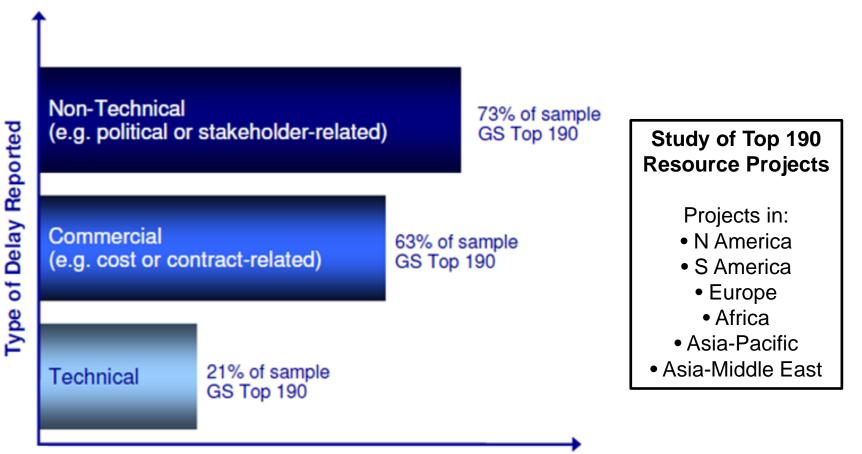


Drivers, Risks, Monetization

- Climate Change, Energy Security, Environmental Impact
- Energy Use, Demand, Resources, and Generation
- Design, Construction, Operations, and Performance
- Initiatives, Program Implementation, and Evaluation
- Market Transformation and Competition
- Legislation, Guidance, and Goals
- Authorities and Utilities
- Costs, Benefits, and Funding
- Alternatives
- Public Outreach and Education
- Stakeholders Involvement
- Workforce Training
- Sustainable and Net Zero Energy Economies
- Human Behavior and Social Dynamics

The Sustainability Imperative

HEALTHY PEOPLE SAFE WORKPLACES ENVIRONMENTAL COMMITMENT SOCIAL RESPONSIBILITY ECONOMIC CONTRIBUTION SOUND GOVERNANCE DERATE


- Sustainable Energy Modernization (SEM)
 - SEM Evaluation
 - SEM Plan

Profitable sustainability

- Economic Factors
 - CAPEX
 - OPEX
- Political Factors
- Environmental Factors
- Social Factors
- Risk management

Challenge: Non-Technical Risk

Reporting Frequency by Type of Delay (%)

Of the 190 projects, average delay of 12 months for non-producing fields

Source: Goldman Sachs Investment Research, 2008

Port Future Operations

- Future Port's Energy Demand
 - Long-Term Demand and Capacities
 - Future Trends
 - Energy Supply/Demand Management
 - Strategic Partnerships
 - Funding Opportunities
 - Port Utilities' Transition to Renewable Power Generation
- Energy Demand/Carbon Footprint Reduction
 - Energy Efficiency
 - Renewable Energy
 - Alternative Clean Energy Technologies and Initiatives

Available & Developing Energy Generation Technologies

Port Operations / Energy Policy

- Port's Energy Vision and Strategy
 - Could the Port become carbon-neutral?
 - Could the Port be powered by all renewable power sources?
 - Could the Port become energy independent or generate power?
 - How can the Port take advantage of emerging technologies?
- Port Energy Policy
 - Port Sustainability Plan
 - Port Energy Plan
 - Stakeholder Engagement

Energy Efficiency Projects

Global CCS Development Strategic Analysis

Customer: Global CCS Institute

Location: Global

Timeframe: Published 2009

IDENTIFY VALUATE DEFINE SEXECUTE OPERATE

- Strategic analysis of the global status of carbon capture, transport and storage projects and technologies
- The Global Carbon Capture and Storage (CCS) Institute, WorleyParsons, Schlumberger, Baker & McKenzie and Electric Power Research Institute
- Six reports to support broad deployment of carbon capture and storage by 2020

UCLA Cogeneration Facility

Customer: University of California Los Angeles

Location: California, USA

Timeframe: 1993 - ongoing

IDENTIFY >> EVALUATE >> DEFINE >> EXECUTE >> OPERATE

- ► 44MW CCGT cogenerating facility
- O&M, repair, production and delivery of thermal energy and electricity
- O&M outsourced to reduce costs, increase availability, engineering services

Collie Power Station

Customer: Verve Energy Location: Western Australia Timeframe: 2005 - ongoing Contract Type: EPCM

IDENTIFY > EVALUATE > DEFINE > EXECUTE > OPERATE

- First full third party operation contract for a major Australian Power Plant
- O&M, asset and outage management, capital improvements
- ▶ Up-rate from 330MW to 340MW
- Top performance global benchmark (RWEnPower)

PANYNJ Cross Harbor Freight Program

Customer: Port Authority of New York & New Jersey **Location:** Port Jersey Peninsula, N.J.

Timeframe: 2011- 2013

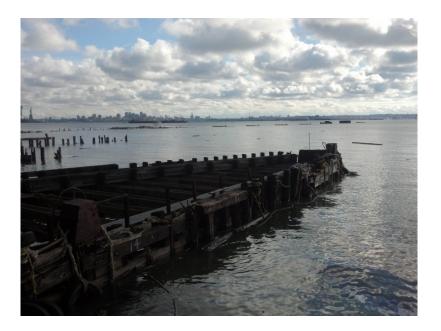
Project Value: \$1.214 m

IDENTIFY VEVALUATE DEFINE EXECUTE OPERATE

- Rail Operational Planning and Process Mapping, Freight Capacity Study, Intermodal, Trade Flow Projections
- Marine Structural and Coastal Engineering, Naval Architecture, Terminal Operational Planning
- 10% of energy use reduction

Greenville Yard pre Hurricane Sandy

The rehabilitation of the Greenville Yard is one of the key elements for the overall PANYNJ capacity expansion and system upgrades



Greenville Yard post Hurricane Sandy

What's Your Port's Vision? Do You Have Sustainable Energy Modernization Strategy for Your Port?

For more information, please contact:

Kat Janowicz Project Manager, Principal Consultant Mob: +1 626 202 8381 e-mail: kat.janowicz@worleyparsons.com

